Links and further reading


Did you know?

Bapteste, E. et al., 2007. Do orthologous gene phylogenies really support tree-thinking? BMC Evolutionary Biology 5:33.

Brasier, M., McLoughlin, N., Green, O., David Wacey, 2006. A fresh look at the fossil evidence for early Archaean cellular life, Phil. Trans. R. Soc. B 361:887-902.

Klompmaker, A.A., Finnegan, S., 2018. Extreme rarity of competitive exclusion in modern and fossil marine benthic ecosystems. Geology 46, 723-726.

Kurland, C.G., Canback, B., Berg, O.G., 2003. Horizontal gene transfer: A critical view, PNAS [Proceedings of the National Academy of Science] 100:9658-62.

Ventura, G.T. et al., 2007. Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere, PNAS 104:14260-65.

Zang, W-L., 2007. Deposition and deformation of late Archaean sediments and preservation of microfossils in the Harris Greenstone Domain, Gawler Craton, South Australia, Precambrian Research 156:107-24.

Current theories don’t work

Examples of convergent and parallel evolution may be found on Wikipedia.

Creationist Geologic Time Scale: an attack strategy for the sciences

Article by Donald Wise (Franklin and Marshall College, Lancaster) discussing some of the most glaring weaknesses of creationist geology. [Abbreviated from the introduction:] ‘The framework of creationist earth history can be assembled into a single geologic time scale. Some of the items are so absurd that all but the most dedicated fundamentalists will see the overall picture as scientific nonsense, even bordering on humor. Science needs to take the offensive by challenging creationists to defend their “scientific” view of earth history as represented by this time scale.’

What fossils tell us

Newell, N.D., 1959. The nature of the fossil record, Proceedings of the American Philosophical Society 103:264-85.

The Hadean Cataclysm

Craddock, R.A., Howard, A.D., 2003. The case for rainfall on a warm, wet early Mars, Journal of Geophysical Research 107, issue E11, 21.1-21.36.

Kamber, B.S. et. al., 2005. Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland, Earth and Planetary Science Letters 240:276-90.

Kring, D.A., Cohen, B.A., 2002. Cataclysmic bombardment throughout the inner Solar System 3.9-4.0 Ga, Journal of Geophysical Research 107, no. E2, 4-1 – 4-6.

Nyquist, L.E., Shih, C.Y., 1992. The isotopic record of lunar volcanism, Geochimica and Cosmochimica Acta 56:2213-34.

Water, water everywhere

Arndt, N.T., 1999. Why was flood volcanism on submerged continental platforms so common in the Precambrian? Precambrian Research 97:155-64.

Kamber, B.S., Moorbath, S., Whitehouse, M.J., 2001. The oldest rocks on Earth: time constraints and geological controversies, Geological Society, London, Special Publications 190:177-203.

Knauth, L.P., Lowe, D.R., 2003. High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa, GSA Bulletin 115:566-80.

New land in the Archaean

Lynn Fichter’s site offers, among other things, a good introduction to:

Drury, S.A., 1981. In: D.G. Smith (ed.), The Archaean eon and before, Cambridge Encyclopedia of Earth Sciences.

Hamilton, W.B., 1998. Archean tectonics and magmatism were not products of plate tectonics, Precambrian Research 91:161.

The first steps from sea to land

Hans Steur’s website has many beautiful images, including these of Carboniferous horseshoe crabs.

Anderson, L.I., Moore, R.A., 2004. Bembicosoma re-examined: a xiphosuran from the Silurian of the North Esk Inlier, Pentland Hills, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences 94:199-206.

Jeram, A.J., 1998. Phylogeny, classification and evolution of Silurian and Devonian scorpions. In: P. A. Selden (ed.), Proceedings of the 17th European Colloquium of Arachnology, Edinburgh 1997, British Arachnological Society, pp 17-31.

Johnson, E.W., Briggs, D.E.G., Suthren, R.J., Wright, J.L., Tunnicliff, S.P., 1994. Non-marine arthropod traces from the subaereal Ordovician Borrowdale volcanic group, English Lake District. Geological Magazine 131:395-406.

Schawaller, W., Shear, W.A., Bonamo, P.M., 1991. The first Paleozoic pseudoscorpions (Arachnida, Pseudoscorpionida), American Museum Novitates 3009:1-24.

Wendruff, A.J. et al., 2020. A Silurian ancestral scorpion with fossilised internal anatomy illustrating a pathway to arachnid terrestrialisation. Scientific Reports 10/14.

The land turns green

Devonian Times. A site devoted to explaining various aspects of the Devonian period.

The Rhynie Chert. The Rhynie Chert is of international importance for its preservation of diverse Devonian flora and fauna, and this website provides an excellent summary of what has been found.

Anderson, J.M. et al., 1999. Patterns of Gondwana plant colonisation and diversification, Journal of African Earth Sciences 28:145-167.

Butterfield, N.J., 2005. Probable Proterozoic fungi, Paleobiology 31:165-82.

Edwards, D., 2003. Xylem in early tracheophytes, Plant, Cell and Environment 26:57-72.

Edwards, D., Davies, K.L., Axe, L., 1992. A vascular conducting strand in the early land plant Cooksonia, Nature 357:683-85.

Edwards, D., Richardson, J.B., 2004. Silurian and Lower Devonian plant assemblages from the Anglo-Welsh Basin: a palaeobotanical and palynological synthesis, Geological Journal 39:375-402.

Falcon-Lang, H., 2005. Earliest mountain forests, Geology Today 21:178-81.

Friedman, W. E., Cook, M. E., 2003. The origin and early evolution of tracheids in vascular plants: integration of palaeobotanical and neobotanical data, Philosophical Transactions of the Royal Society B 355:857-68.

Gargas, A., DePriest, P.T., Grube, M., Tehler, A., 1995. Multiple origins of lichen symbioses in fungi suggested by SSU rDNA phylogeny, Science 268:1492-95.

Graham, L.E., Wilcox, L.W., Cook, M.E., Gensel, P.G., 2004. Resistant tissues of modern marchantioid liverworts resemble enigmatic Early Paleozoic microfossils, PNAS 101:11025-29.

Hetherington, A.J., Dolan, L., 2018. Stepwise and independent origins of roots among land plants. Nature

Jahren, A.H., Porter, S., Kuglitsch, J.J., 2003. Lichen metabolism identified in Early Devonian terrestrial organisms, Geology 31:99-103.

Kenrick, P., 2000. The relationships of vascular plants, Phil . Trans. R. Soc. Lond. B 355:847-55.

Kotyk, M.E. et al., 2002. Morphologically complex plant macrofossils from the Late Silurian of Arctic Canada, American Journal of Botany 89:1004-13.

Ligrone, R., Duckett, J.G., Renzaglia, K.S., 2000. Conducting tissues and phyletic relationships of bryophytes, Philosophical Transactions of the Royal Society B 355:795-813.

Redecker, D., Kodner, R., Graham, L.E., 2000. Glomalean fungi from the Ordovician,
Science 289:1920-21.

Remy, W., Taylor, T.N., Haas, H., Kerp, H. Four hundred-million-year-old vesicular arbuscular mycorrhizae, PNAS 91:11841-43.

Rickards, R.B., 2000. The age of the earliest club mosses: the Silurian Baragwanathia flora in Victoria, Australia, Geology Magazine 137:207-09.

Sherwood-Pike, M.A., Gray, J. 1985. Silurian fungal remains: probable records of the Class Ascomycetes, Lethaia 18:1-20.

Sperry, J.S., 2003. Evolution of water transport and xylem structure, International Journal of Plant Sciences 164:S115-27.

Steemans, P. et al., 2009. Origin and radiation of the earliest vascular land plants, Science 324:353.

Taylor, T.N., Osborne, J.M., 1996. The importance of fungi in shaping the paleoecosystem, Rev. Palaeobot. Palynol. 90:249-62.

Wellman, C.H., Gray, J., 2000. The microfossil record of early land plants, Phil. Trans. R. Soc. Lond. B 355:717-32.

Wellmann, C.H., Osterloff, P.L., Mohiuddin, U., 2003. Fragments of the earliest land plants, Nature 425:282-84.

Wellmann, C.H., Steemans, P., Vecoli, M., 2013. Palaeophytogeography of Ordovician–Silurian land plants. In: D.A.T. Harper, T. Servais (eds), Early Palaeozoic Biogeography and Palaeogeography. Geological Society, London, Memoirs 38:461–476

Xunlai, Y., Shuhai, X., Taylor, T.N., 2005. Lichen-like symbiosis 600 million years ago, Science 308:1017-20.

Insects and creepy crawlies

Evidence that trigonotarbids could spin silk and thus ‘evolved’ the apparatus of silk-spinning independently of spiders. Abstract of presentation.

Dunlop, J.A., Anderson, L.I., Kerp, H., Hass, H., 2004. A harvestman (Arachnida: Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland, Transactions of the Royal Society of Edinburgh: Earth Sciences 94:341-53.

Engel, M.S., Grimaldi, D.A., 2004. New light shed on the oldest insect, Nature 427:627-30.

Selden, P.A., Shear, W.A., Bonamo, P. M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae, Palaeontology 34:241-81.

Wilson, H.M., 2005. Zosterogrammida, a new order of millipedes from the Middle Silurian of Scotland and the Upper Carboniferous of Euramerica, Palaeontology 48:1101-10.

Wilson, H.M., Anderson, L.I., 2004. Morphology and taxonomy of Paleozoic millipedes (Diplopoda: Chilognatha: Archipolypoda) from Scotland, Journal of Paleontology 78:169-84.

The first tetrapods

Ahlberg, P.E., Luksevics, E., Mark-Kurik, E., 2000. A near-tetrapod from the Baltic Middle Devonian, Paleontology 43:533-48.

Anderson, J.S., Carroll, R.L., Rowe, T.B. 2003. New information on Lethiscus stocki (Tetrapoda: Lepospondyli: Aistopoda) from high-resolution computed tomography and a phylogenetic analysis of Aistopoda, Canadian Journal of Earth Sciences 40:1071-83

Blieck, A. et al., 2007. The biostratigraphical and palaeogeographical framework of the earliest diversification of tetrapods (Late Devonian), Geological Society, London, Special Publications 278:219-35.

Boisvert, C.A., 2005. The pelvic fin and girdle of Panderichthys and the origin of tetrapod locomotion, Nature 438:1145-47.

Carroll, R.L., 1995. Between fish and amphibian, Nature 373:389-90.

Carroll, R.L., 2001. The origin and early radiation of terrestrial vertebrates, Journal of Paleontology 75:1202-13.

Clack, J.A., 2002. Gaining Ground: The Origin and Evolution of Tetrapods, Bloomington, Indiana.

Clack, J.A. et al, 2003. A uniquely specialized ear in a very early tetrapod, Nature 425:65-69.

Clack, J.A., 2005. Getting a leg up on land: recent fossil discoveries cast light on the evolution of four-limbed animals from fish, Scientific American (December).

Niedziedzki, G. et al., 2010. Tetrapod trackways from the early Middle Devonian period of Poland, Nature 463:43-48.

Perkins, S., 2001. The latest Pisces of an evolutionary puzzle, Science News 159:282ff.
The coelacanth is a lobe-finned fish that has changed little since its appearance in the Devonian, and it possesses some unique features. The article mentions: (1) electrosensitive cells that are concentrated in a single organ in its head, (2) an intercranial joint which enables the jaw to open upwards as well as downwards, increasing the suction created when the coelacanth gulps its prey, and (3) a crystal layer behind its retina which enables it to see extremely well in dim light.

Pierce, S.E., Clack, J.A., Hutchinson, J.R., 2012. Three-dimensional limb joint mobility in the early tetrapod Ichthyostega. Nature 486, 523-527.

Stössel, I. 2000. Frühe Tetrapoden: kontroverse Spurenfossilien, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 145:31-40.

Vogel, W.O.P., Hughes, G.M., Mattheus, U., 1998. Non-respiratory blood vessels in Latimeria gill filaments, Philosophical Transactions of the Royal Society B 353:465-75.

Williams, E.A., Sergeev, S.A., Stössel, I., Ford, M., 1997. An Eifelian U-Pb zircon date for the Enagh Tuff Bed from the Old Red Sandstone of the Munster Basin in NW Iveragh, SW Ireland, Journal of the Geological Society 154:189-93

Rising fast: the first trees

Bateman, R.M. et al., 1998. Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation, Annual Review of Ecology and Systematics 29:263-92.

Donoghue, M.J., 2005. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny, Paleobiology 31:77-93.

Edwards, D., Li, C.-S., Raven, J.A., 2006. Tracheids in an early vascular plant: a tale of two branches, Botanical Journal of the Linnean Society 150:115-30.

Elick, J.M., Driese, S.G., Mora, C.I. 1998. Very large plant and root traces from the Early to Middle Devonian: implications for early terrestrial ecosystems and atmospheric p(CO2), Bulletin of the Geological Society of America 110:143-46.

Friedman, W.E., Moore, R.C., Purugganan, M.D., 2004. The evolution of plant development, American Journal of Botany 91:1726-41.

Gensel, P.G., Berry, C.M., 2001. Early lycophyte evolution, American Fern Journal 91:74-98.

Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., Streel, M., Steemans, P., 2004. Runcaria, a Middle Devonian seed plant precursor, Science 306:856-58.

Junker, R., 1998. Einzigartige Baumgestalten: Die Bärlappbäume des Karbons, Studium Integrale Journal 5:51-57.

Kenrick, P., Crane, P.R., 1997. The origin and early evolution of plants on land, Nature 389:33-39.

Meyer-Berthaud, B., Scheckler, S.E., Wendt, J.,1999. Archaeopteris is the earliest known modern tree, Nature 398:700-01.

Pigg, K. B., 2001. Isoetalean lycopsid evolution: from the Devonian to the present, American Fern Journal 91:99-114.

Pryer, K.M. et al., 2004. Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. American Journal of Botany 91:1582-98.

Rothwell, G.W., Nixon, K.C., 2006. How does the inclusion of fossil data change our conclusions about the phylogenetic history of Euphyllophytes? International Journal of Plant Sciences, 167:737-49.

Stein, W.E. et al., 2007. Giant cladoxylopsid trees resolve the enigma of the Earth’s earliest forest stumps at Gilboa, Nature 446:904-07.

The antediluvian world

Araki, H., et al., 2009. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry, Science 323:897-900.

Arnauldt, D. et al., 2018. Deep and persistent melt layer in the Archaean mantle. Nature Geoscience 11, 139–143.

Bolfan-Casanova, N., 2005. Water in the Earth’s mantle, Mineralogical Magazine 69:229-57.

Horowitz, W., 1998. Mesopotamian Cosmic Geography, Winona Lake.

Keppler, H., 2014. Earth’s deep water reservoir, Nature 507:174-75.

Munday, J.C., 1996. Eden’s geography erodes Flood geology, Westminster Theological Journal 58:123-54.

Rohl, D. M., 1998. Legend: The Genesis of Civilization, London.

Seely, P. H., 1997. The geographical meaning of ‘earth’ and ‘seas’ in Gen. 1:10, Westminster Theological Journal 59:231-55.

Tomkins, A.G. et al., 2016. Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere, Nature 533:235-238.

Tsumura, D. T., 1989. The Earth and the Waters in Genesis 1 and 2: A Linguistic Investigation, Journal for the Study of the Old Testament Supplement 83, Sheffield.

Wood, T. C., 2002. A baraminology tutorial with examples from the grasses (Poaceae), Creation Ex Nihilo Technical Journal 16:15-25.

Antediluvian fauna and flora

Gatesy, J., Yelon, D., Desalle, R., Vrba, E.S., 1992. Phylogeny of the Bovidae (Artiodactyla, Mammalia) based on mitochondrial ribosomal dna-sequences. Molecular Biology and Evolution 9:433-46.

Gatesy, J., Arctander, P., 2000. Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes, Systematic Biology 49:515-38.

Gatesy, J., Matthee, C., Desalle, R., Hayashi, C., 2002. Resolution of a supertree/supermatrix paradox, Systematic Biology 51:652-64.

Hassanin, A., Douzery, E.J.P., 1999. Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae, Proceedings of the Royal Society of London B 266:893-900.

Kingdon, J., 1999. East African Mammals: An Atlas of Evolution in Africa, vols. IIIC and D, Chicago.

Matthee, C.A., Davis, S.K., 2001. Molecular insights into the evolution of the family Bovidae: a nuclear DNA perspective, Molecular Biology & Evolution 18:1220-30.

From amphibian to reptile

Carroll, R.L., Gaskill, P., 1978. The Order Microsauria, American Philosophical Society, Philadelphia.

Clack, J.A., 2002. Gaining Ground, Bloomington, IN.

Clack, J.A. & Finney, S.M., 2005. Pederpes finneyae, an articulated tetrapod from the Tournasian of Western Scotland, Journal of Systematic Palaeontology 2:311-46.

Ruta, M., Coates, M.I., Quicke, D.L.J., 2003. Early tetrapod relationships revisited, Biology Review 78:251-345.

Smithson, T.R., Wood, S.P., Marshall, J.E.A., Clack, J.A., 2012. Earliest Carboniferous tetrapod and arthropod faunas from Scotland populate Romer’s Gap. PNAS (early edition).

Van Tuinen, M., Hadly, E., 2004. Error in estimation of rate and time inferred from the early amniote fossil record and avian molecular clocks, Journal of Molecular Evolution 59:267-76.

From reptile to mammal

Abdala, F., Rubidge, B.S., van den Heever, J.V., 2008. The oldest therocephalians (Therapsida, Eutheriodontia) and the early diversification of Therapsida. Palaeontology 51:1011-24.

Angielczyk, K.D., 2003. Phylogenetic evidence for and implications of a dual origin of propaliny in anomodont therapsids (Synapsida), Paleobiology 30:268-96.

Carroll, R.L., 1988. Vertebrate Paleontology and Evolution, New York.

Han, G., Mao, F., Bi, S., Wang, Y., Meng, J., 2018. A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones, Nature

Hopson, J.A., Kitching, J.W., 2001. A probainognathian cynodont from South Africa and the phylogeny of non-mammalian cynodonts, Bulletin of the Museum of Comparative Zoology 156:5-35.

Lucas, S.G., 2004. A global hiatus in the Middle Permian tetrapod fossil record, Stratigraphy 1:47-64.

Kemp, T.S., 2005. The Origin and Evolution of Mammals, Oxford.

Luo, Z.X., 2007. Transformation and diversification in early mammal evolution, Nature 450:1011-19.

Luo, Z.X. et al., 2017. New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem, Nature 548:326-329.

Milner, A.R., 1993. Biogeography of Palaeozoic tetrapods. In: J. A. Long (ed.), Palaeozoic vertebrate biostratigraphy and Biogeography, London, pp 324-53.

Meng, J., Hu, Y., Wang, Y., Wang, X., Li, C., 2006. A Mesozoic gliding mammal from northeastern China, Nature 444:889-93.

Pickrell, J., 2019. The making of mammals, Nature 574:468-472.

Reisz, R.R., Laurin, M., 2004. A reevaluation of the enigmatic Permian synapsid Watongia and of its stratigraphic significance, Canadian Journal of Earth Sciences 41:377-86.

Rieppel, O., Reisz, R.R., 1999. The origin and early evolution of turtles, Annual Review of Ecology and Systematics 30:1-22.

Rose, KI. D., 2006. The Beginning of the Age of Mammals, Baltimore.

Rubidge, B.S., Sidor, C.A., 2001. Evolutionary patterns among Permo-Triassic therapsids, Annual Review of Ecology and Systematics 32:449-80.

Rybczynski, N., Reisz, R.R., 2001. Earliest evidence for efficient oral processing in a terrestrial herbivore, Nature 411:684-47.

Sidor, C.A., Hopson, J. A., 1998. Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida, Paleobiology 24:254-73.

Sidor, C.A., 2003a. Evolutionary trends and the origin of the mammalian lower jaw, Paleobiology 29:605-40.

Sidor, C.A., 2003b. The naris and palate of Lycaenodon longiceps (Therapsida: Biarmosuchia), Journal of Paleontology 77:977-84.

Wang, H., Meng, J., Wang, Y., 2020. Cretaceous fossil reveals a new pattern in mammalian middle ear evolution. Nature

From land reptile to marine

Chapman, G., 1996. Ichthyosaurs – created to live in the sea, Creation 18:14-15.

Fischer, V. et al. 2012. New ophthalmosaurid ichthyosaurs from the European Lower Cretaceous demonstrate extensive ichthyosaur survival across the Jurassic-Cretaceous boundary. PLoS ONE 7(1): e29234.

Gould, S.J., 1980. The Panda’s Thumb: More Reflections in Natural History, New York.

Maisch, M.W., Matzke, A.T., 2002. The skull of a large Lower Triassic ichthyosaur from Spitzbergen and its implications for the origin of the Ichthyosauria, Lethaia 35:250-56.

Motani, R., 1998. First complete forefin of the ichthyosaur Grippia longirostris from the Triassic of Spitsbergen, Palaeontology 41:591-99.

Motani, R., Minoura, N., Ando, T., 1998. Ichthyosaurian relationships illuminated by new primitive skeletons from Japan, Nature 393:255-57.

Motani, R., 1999. Phylogeny of the Ichthyopterygia, Journal of Vertebrate Palaeontology 19:473-96.

Motani, R., Jiang, D.Y., Tintori, A., Rieppel, O., Chen, G.B., 2014. Terrestrial origin of viviparity in Mesozoic marine reptiles indicated by Early Triassic embryonic fossils, PLoS ONE 9(2): e88640.

Schmid-Röhl, A., Röhl, H., 2003. Overgrowth on ammonite conchs: environmental implications for the Lower Toarcian Posidonia Shale, Palaeontology 46:339-52.

The origin of turtles

Bowen, B.W., Karl, S.A., 1997. Population genetics, phylogeography, and molecular evolution. In: P. L. Lutz & J. A. Musick (eds), The Biology of Sea Turtles, Boca Raton, Florida, pp 29-50.

Claude, J., et al, 2005. Ecological correlates and evolutionary divergence in the skull of turtles: a geometric morphometric assessment, Systematic Biology 53:933-48.

Depecker, M., Berge, C., Penin, X., Renous, S., 2006. Geometric morphometrics of the shoulder girdle in extant turtles (Chelonii), Journal of Anatomy 208:35-45.

Gould, S.J., 1980. The Panda’s Thumb, New York.

Hirayama, R., 1998. Oldest known sea turtle, Nature 392:705-09.

Hays, G.C., Houghton, J.D.R., Myers, A.E., 2004. Pan-Atlantic leatherback turtle movements, Nature 429:522.

Lee, M.S.Y., 1997. Pareiasaur phylogeny and the origin of turtles, Zoological Journal of the Linnaean Society 120:197-280.

Li, C. et al., 2008. An ancestral turtle from the Late Triassic of southwestern China, Nature 456:497-501.

Paladino, F.V., O’Connor, M.P., Spotila, J.R., 1990. Metabolism of leatherback turtles, gigantothermy, and thermoregulation of dinosaurs, Nature 344:858-60.

Petruzzelli, R. et al, 1996. Diving behaviour and haemoglobin function: the primary structure of the alpha- and beta-chains of the sea turtle (Caretta caretta) and its functional implications, Biochemical Journal 316:959-65.

Reisz, R.R., Head, J.J., 2008. Turtle origins out to sea, Nature 456:450-01.

Rieppel, O., 2001. Turtles as hopeful monsters, BioEssays 23:987-91.

Rieppel, O., 2002. The dermal armor of the cyamodontoid placodonts (Reptilia, Sauropterygia): morphology and systematic value, Fieldiana, Geology, new series, no. 46, pp 1-41.

Rougier, G.W., de la Fuente, M.S., Arcucci, A.B., 1995. Late Triassic turtles from South America, Science 268:855-58.

Zardoya, R., Meyer, A., 2001. The evolutionary position of turtles revised, Naturwissenschaften 88:193-200.

From dinosaur to bird

Angst, D., Buffetaut, E., Lécuyer, C., Amiot, R., 2013. “Terror birds” (Phorusrhacidae) from the Eocene of Europe imply trans-Tethys dispersal. PloS one 8, e80357.

Atterholt, J., Hutchison, J.H., O’Connor, J.K., 2018. The most complete enantiornithine from North America and a phylogenetic analysis of the Avisauridae. PeerJ 6, e5910.

Baron, M.G., Norman, D.B., Barrett, P.M, 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543, 501–506.

Bock, W.J., 2000. Explanatory history of the origin of feathers. American Zoologist 40, 478–485.

Chatterjee, S., 1997. The Rise of Birds: 225 Million Years of Evolution, Johns Hopkins University Press, Baltimore.
Cracraft, J. et al., 2004. Phylogenetic relationships among modern birds (Neornithes). In: J. Cracraft, M.J. Donoghue (eds), Assembling the Tree of Life, Oxford University Press, Oxford, pp 468–489.

Cracraft, J. et al., 2015. Response to comment on ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. Science 349, 1460.

Deeming, C., Mayr, G., 2018. Pelvis morphology suggests that early Mesozoic birds were too heavy to contact incubate their eggs. J. Evol. Biol. 31, 701–709.

Dyke, G., Lindow, B., 2009. Taphonomy and abundance of birds from the Lower Eocene Fur formation of Denmark, Geol. J. 44, 365–373.

Eriksson, O., 2016. Evolution of angiosperm seed disperser mutualisms: the timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biol. Rev. 91, 168–186.

Feduccia, A. 2003. ‘Big Bang’ for Tertiary birds? Trends in Ecology and Evolution 18, 172–176.

Feduccia, A. 2014. Avian extinction at the end of the Cretaceous: Assessing the magnitude and subsequent explosive radiation. Cret. Res. 50, 1–15.

Feo, T.J., Field, D.J., Prum, R.O., 2015. Barb geometry of asymmetrical feathers reveals a transitional morphology in the evolution of avian flight. Proc. Roy. Soc. B 282, 20142864.

Field, D.J. et al., 2020. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401.

Foth, C., Tischlinger, H., Rauhut, O.W.M., 2014. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511 79–82.

Han, K.L. et al., 2011. Are transposable element insertions homoplasy free? An examination using the avian tree of life. Syst. Biol. 60, 375–386.

Hartman, S. et al., 2019. A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ 7, e7247.

Jarvis, E.D. et al., 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331.

Ji, Q., Currie, P.J., Norell, M.A., Ji, S.A., 1998. Two feathered dinosaurs from northeastern China. Nature 393, 753–761.

Langer, M.C. et al., 2017. Untangling the dinosaur family tree. Nature 551, E1-E3.

Longrich, N.R., Tokaryk, T., Field, D.J., 2011. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary, Proc Natl Acad Sci USA 108,15253–15257.

Macaluso, L., Tschopp, E., 2018. Evolutionary changes in pubic orientation in dinosaurs are more strongly correlated with the ventilation system than with herbivory. Palaeontology 61, 703-719.

Mayr, G., 2009. Paleogene Fossil Birds, Springer-Verlag, Berlin.

Mayr, G., 2014. The origins of crown group birds: molecules and fossils. Palaeontology 57, 231–242.

Müller, R.D. et al., 2019. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907.

Nesbitt, S.J. et al., 2019. The earliest bird-line archosaurs and the assembly of the dinosaur body plan. Nature 544, 484–487.

Oliveros, C.H. et al., 2019. Earth history and the passerine superradiation. Proc. Nat. Acad. Sci. USA 116, 7916–7925.

Prum, R.O. et al., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.

Rauhut, O.W.M., Foth, C., Tischlinger, H., 2018. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6, e4191.

Reddy, S. et al., 2017. Why do phylogenomic data sets yield conflicting trees? Data type influences the avian tree of life more than taxon sampling. Syst. Biol. 66, 857–879.

Wang, M., Wang, X., Wang, Y., Zhou, Z., 2016. A new basal bird from China with implications for morphological diversity in early birds, Sci. Rep. 6, 19700.

Wang, M., O’Connor, J.K., Pan, Y., Zhou, Z., 2017. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle. Nat. Comm. 8, 14141.

Williams, C.L., Hagelin, J.C., Kooyman, G.L., 2015. Hidden keys to survival: the type, density, pattern and functional role of emperor penguin body feathers. Proc. Biol. Sci. B 282, 20152033.

Xu, X., Zheng, X., You, H., 2010. Exceptional dinosaur fossils show ontogentic development of early feathers. Nature464, 1338–1341.

Xu, X. et al., 2017. Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat. Comm. 8, 14972.

Zheng, X.Y., You, H.L., Xu, X., Dong, Z.M., 2009. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 458, 333–336.

Manatees and dugongs

Den Hartog, C., Kuo. J., 2006. Taxonomy and biogeography of seagrasses. In: A. W. D. Larkum, R. J. Orth & C. M. Duarte (eds), Seagrasses: Biology, Ecology and Conservation, pp 1-23.

Reep, R., Sarko, D.K. Tactile hair in manatees.

Reep, R. 2009. How manatees find their way.

Walcott, M., Procaccini, G., Les, D.H., Reusch, T.B.H., 2006. Seagrass evolution, ecology and conservation: a genetic perspective. In: A.W.D. Larkum, R.J. Orth & C.M. Duarte (eds), op. cit., pp 25-50.

From ape to man

Alemseged, Z. et al., 2006. A juvenile early hominin skeleton from Dikika, Ethiopia, Nature 443:296-301.

Alexander, R. McN., 2004. Bipedal animals, and their differences from humans, Journal of Anatomy 204:321-30.

Berillon, G., 2003. Assessing the longitudinal structure of the early hominid foot: a two-dimensional architecture analysis, Human Evolution 18:113-22.

Bramble, D.M., Lieberman, D.E., 2004. Endurance running and the evolution of Homo, Nature 432:345-52.

Braun, D.R. et al., 2010. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya, Proceedings of the National Academy of Sciences 107:10002-07.

Graves, R.R. et al. 2010. Just how strapping was KNM-WT 15000? Journal of Human Evolution 59:542-54.

Haile-Selassie, Y. et al., 2010. An early Australopithecus afarensis postcranium from Woranso-Mille, Ethiopia, Proceedings of the National Academy of Sciences 107:12121-126.

Henneberg, M., 2009. Two interpretations of human evolution: essentialism and Darwinism, Anthropological Review 72:66-80.

Irschick, D.J., Jayne, B.C., 1999. Comparative three-dimensional kinematics of the hindlimb for high-speed bipedal and quadrupedal locomotion of lizards, Journal of Experimental Biology 202:1047-65.

Kimbel, W.H., Johanson, D.C., Rak, Y., 1994. The first skull and other new discoveries of Australopithecus afarensis at Hadar, Ethiopia, Nature 368:449-52.

Kimbel, W.H., Rak, Y., Johanson, D.C., 2004. The Skull of Australopithecus Afarensis, Oxford.

McHenry, H.M., Lee, L.R., 1998. Body proportions in Australopithecus afarensis and A. africanus and the origin of the genus Homo, Journal of Human Evolution 35:1-22.

Quintyn, C., 2009. The naming of new species in hominin evolution: A radical proposal – A temporary cessation in assigning new names, HOMO – Journal of Comparative Human Biology 60:307-41.

Raichlen, D.A., et al., 2010. Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics, PLoS ONE 5:e9769.

Richmond, B.G., Aiello, L.C., Wood, B.A., 2002. Early hominin limb proportions, Journal of Human Evolution 43:529-48.

Strait, D.S., Grine, F. E., Moniz, M. A., 1997. A reappraisal of early hominid phylogeny Journal of Human Evolution 32:17-82.

Su, D.F., Harrison, T., 2008. Ecological implications of the relative rarity of fossil hominins at Laetoli, Journal of Human Evolution 55:672-81.

Wang, W.J., Crompton, R.H., Li, Y., Gunther, M.M., 2003. Energy transformation during erect and “bent-hip, bent-knee” walking by humans with implications for the evolution of bipedalism, Journal of Human Evolution 44:563-79.

The old world destroyed

Andrews-Hanna, J. C., Zuber, M.T., Banerdt, B. W., 2008. The Borealis basin and the origin of the martian crustal dichotomy, Nature 453:1212-16.

Asphaug, E., Agnor, C. B., Williams, Q., 2006. Hit-and-run planetary collisions, Nature 439:155-60.

Astakhov, S. A., Burbanks, A.D., Wiggins, S., Farrelly, D., 2003. Chaos-assisted capture of irregular moons, Nature 423:264-67.

Baker, J., et al., 2005. Early planetesimal melting from an age of 4.5662 Gyr for differentiated meteorites, Nature 436:1127-31.

Benz, W., Anic, A., Horner, J., Whitby, J.A., 2007. The origin of Mercury, Space Science Reviews 132:189-202.

Bizzarro, M., Baker, J.A., Haack, H., 2004. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions, Nature 431:275-78.

Bizzarro, M., et al., 2007. Evidence for a late supernova Injection of 60Fe into the protoplanetary disk, Science 316:1178-81.

Brennecka, G.A., et al., 2009. 238U/235U variations in CAIs: implications for Pb-Pb dating, 40th LPSC, abs 1061.

Burckhardt, C. et al., 2008. Hf-W mineral isochron for Ca,Al-rich inclusions: Age of the solar system and the timing of core formation in planetesimals, Geochimica et Cosmochimica Acta 72:6177-97.

Connelly, J.N. et al., 2012. The absolute chronology and thermal processing of solids in the Solar protoplanetary disk, Science 338:651–655.

Connolly, H.C., Desch, S.J., Ash, R.D., Jones, R.H., 2006. Transient heating events in the protoplanetary nebula. In: D.S. Lauretta, H.Y. McSween (eds), Meteorites and the Early Solar System II, Tucson, Az., pp 383-97.

Cooray, S., 2006. Sifting through the debris, Nature 442:640-41.

Doyle, P.M. et al., 2015. Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nat. Comm. 6, 7444.

Flament, N., Coultice, N., Rey, P.F., 2008. A case for late-Archaean continental emergence from thermal evolution models and hypsometry, Earth and Planetary Science Letters 275:326-36.

Greenwood, R.C. et al, 2015. Geochemistry and oxygen isotope composition of main-group pallasites and olivine-rich clasts in mesosiderites: Implications for the “Great Dunite Shortage” and HED-mesosiderite connection, Geochimica et Cosmochimica Acta 169:115-136

Haack, H., McCoy, T.J., 2005. Iron and stony-iron meteorites. In: A. M. Davis (ed.), Meteorites, Comets and Planets, Amsterdam, pp 326-45.

Hevey, P.J., Sanders, I.S., 2006. A model for planetesimal meltdown by 26Al, and its implications for meteorite parent bodies, Meteoritics and Planetary Sciences 41:95-106.

Hsu, W., et al., 2006. A late episode of irradiation in the early solar system: evidence from extinct 36Cl and 26Al in meteorites, The Astrophysical Journal 640:525-29.

Hutchison, R., Bridges, J.C., Gilmour, J.D., 2005. Chemical, petrographic and chronologic clues to chondrule origins by impact. In: A.N. Krot, E.R.D. Scott, B. Reipurth (eds), Chondrules and the Protoplanetary Disk, Astronomical Society of the Pacific Conference Series 341:933-48.

Jewitt, D., Sheppard, S.S., Kleyna, J., 2006. The strangest satellites in the Solar System, Scientific American (Aug) pp 41-47.

Kleine, T. et al., 2005. Early core formation in asteroids and late accretion of chondrite parent bodies: Evidence from 182Hf-182W in CAIs, metal-rich chondrites, and iron meteorites, Geochimica et Cosmochimica Acta 69:5805-18.

Kleine, T., Bourdon, B., Irving, A.J., 2009. Hf-W chronology of the angrite parent body: timing of accretion, core formation and magmatism, 40th LPSC, abs. 2403.

Krot, A.N., Amelin, Y., Cassen, P., Meibom, A., 2005. Young chondrules in CB chondrites from a giant impact in the early Solar System. Nature 436:989-92.

Krot, A., et al,., 2008. Multiple generations of refractory inclusions in the metal-rich carbonaceous chondrites Acfer 182/214 and Isheyevo. The Astrophysical Journal 672:713-21.

Kunihiro, T., Rubin, A.E., McKeegan, K.D., Wasson, J.T., 2004. Initial 26Al/27Al in carbonaceous-chondrite chondrules: Too little 26Al to melt asteroids, Geochimica et Cosmochimica Acta 68:2947-57.

Leroux, H. et al., 2008. Igneous Ca-rich pyroxene in comet 81P/Wild 2, American Mineralogist 93:1933-36.

Libourel, G., Krot, A.N., 2007. Evidence for the presence of planetesimal material among the precursors of magnesian chondrules of nebular origin, Earth and Planetary Science Letters 254:1-8.

Lis, D.C. et al., 2019. Terrestrial deuterium-to-hydrogen ratio in water in hyperactive comets. Astronomy & Astrophysics 635, L5.

MacPherson, G.J., et al., 2005. Calcium-aluminum-rich inclusions: major unanswered questions. In: : A.N. Krot, E.R.D. Scott, B. Reipurth (eds), op. cit. 531:225-50.

Marzari, F., Farinella, P., Davis, D.R., 1999. The origin, aging and death of asteroid families, Icarus 142:63-77.

Ouyed, R., Fundamenski, W.R., Cripps, G.R., Sutherland, P.G., 1998. D-D fusion in the interior of Jupiter? The Astrophysical Journal 501:367-74.

Palme, H., O’Neill, H.S.C., 2005. Cosmochemical estimates of mantle composition. In: R.W. Carlson, The Mantle and Core, Amsterdam pp 1-38.

Qin, L., et al., 2008. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modelling, Earth and Planetary Science Letters 273:94-104.

Quitté, G. et al., 2007. Correlated iron 60, nickel 62, and zirconium 96 in refractory inclusions and the origin of the Solar System, The Astrophysical Journal 655:678-84.

Rudraswami, N.G., Goswami, J.N., 2007. 26Al in chondrules from unequilibrated L chondrites: Onset and duration of chondrule formation in the early solar system, Earth and Planetary Science Letters 257:231-44.

Rudraswami, N.G. et al., 2008. 26Al records in chondrules from unequilibrated ordinary chondrites: II. Duration of chondrule formation and parent body thermal metamorphism, Earth and Planetary Science Letters 274:93-102.

Sanders, I., Taylor, J. 2005. Implications of 26Al in nebular dust: formation of chondrules by disruption of molten planetesimals. In: A.N. Krot, E.R.D., Scott, B. Reipurth (eds), op. cit., pp 915-32.

Sanders, I., 2009. CAIs made by giant impact, 40th LPSC, abs. 2275.

Schersten, A. et al., 2006. Hf-W evidence for rapid differentiation of ironmeteorite parent bodies, Earth and Planetary Science Letters 241:530-42.

Scott, E.R.D., Sanders, I.S., Goldstein, J.I., Krot, A.N., 2007. Meteorite constraints on the first 5 Myr of planetary growth in the inner solar system, Workshop on Chronology of Meteorites, LPI Contribution No. 1374, p.151-52.

Sears, D.W.G., 2005. The Origin of Chondrules and Chondrites, Cambridge (p 156).

Smith, C.G.A. et al., 2007. An unexpected cooling effect in Saturn’s upper atmosphere, Nature 445:399-401.

Sokol, A.K., et al., 2007. Late accretion and lithification of chondritic parent bodies: Mg isotope studies on fragments from primitive chondrites and chondritic breccias, Meteoritics & Planetary Science 42:1291-308.

Taylor, S.R., 2001. Solar System Evolution: A New Perspective, Cambridge.

Thrane, K., Bizzarro, M., Baker, J.A., 2006. Extremely brief formation interval for refractory inclusions and uniform distribution of 26Al in the early solar system, The Astrophysical Journal 646:L159-62.

Yang, J., Goldstein, J.I., Scott, E.D.R., 2007. Iron meteorite evidence for early formation and catastrophic disruption of protoplanets, Nature 446:888-91.

Yang, J., Goldstein, J.I., Scott, E.D.R., 2008. Metallographic cooling rates and origin of IVA iron meteorites, Geochimica et Cosmochimica Acta 72:3043-61.

Young, E.D. et al., 2005. Supra-canonical 26Al/27Al and the residence time of CAIs in the solar protoplanetary disk, Science 308:223-27.

Ecological succession

Well-illustrated examples of successions are given by Offwell Woodland and Wildland Trust: a hydrosere, and coastal sand dunes.

Plate tectonics (‘continental drift’) . Includes a beautiful map showing the location of today’s plate boundaries, active volcanoes, earthquakes, and impact craters. On-line version of the 77-page booklet This Dynamic Earth: the Story of Plate Tectonics (1996). The basic concept was first aired as early as 1596, but it was not proposed as a scientific theory until 1912, by the German meteorologist Alfred Wegener. Initially resisted, it gained ground as the weight of supporting evidence increased. The most important break-through came in the 1960s with the realisation that continents moved, not by ploughing through the ocean floor, but by new floor being generated at mid-oceanic ridges and being subducted under trenches at the edges of continents back into the mantle. Reconstructions of Earth’s changing palaeogeography from the late Precambrian to the present day (Ron Blakey, Northern Arizona University). An informative source of palaeogeographic maps from the late Precambrian to the present day (Christopher Scotese). The site also includes an explanation of the methods used for constructing such maps.

Herzberg, C., Condie, K., Korenaga, J., 2010. Thermal history of the Earth and its petrological expression, Earth and Planetary Science Letters 292:79-88.

Korenaga, J., 2006. Archean geodynamics and the thermal evolution of Earth. In: K. Benn, J.-C. Mareschal. & K. C. Condie (eds), Archean Geodynamics and Environments, Geophysical Monograph 164, American Geophysical Union, pp 7-32.

Marcano, M. C., Van der Voo, R., Niocaill, C. M., 1999. True polar wandering during the Permo-Triassic, Geodynamics 28:75-95.

Steuber, T.,Veizer, J. 2003. Phanerozoic record of plate tectonic control of seawater chemistry and carbonate sedimentation, Geology 30:1123-26.

Tackley, P.J., 2000. The quest for self-consistent generation of plate tectonics in mantle convection models. In: M. A. Richards et al (eds), History and Dynamics of Global Plate Motions, pp 47-72.

The created world no longer exists

Behe, M., 2000. Intelligent design is not creationism, letter to Science 07/07/00.

Carroll, W.E., 2000. Creation, evolution and Thomas Aquinas, Revue des Questions Scientifiques 171:319-47.

Dawkins, R., 1986. The Blind Watchmaker, London.

Ham, K., 1998. A young Earth – it’s not the issue, AiG-USA Newsletter.

Harrison, T.M. et al, 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga, Science 310:1947-50.

Humphreys, R., 2000. Accelerated nuclear decay: a viable hypothesis? In: L. Vardiman, A. A. Snelling & E. F. Chaffin (eds), Radioisotopes and the Age of the Earth, El Cajon, Ca., pp 333-79.

Humphreys, C.J., 2003. The Miracles of Exodus: A Scientist’s Discovery of the Extraordinary Natural Causes of the Biblical Stories, San Francisco.

Krause, D.J., 1980. Apparent age and its reception in the 19th century, Journal of the American Scientific Affiliation 32:146-50.

Lieberman, D.E., 2004. Engineering for animals, Nature 428:893.

Scott, E.C., 2000. Not (just) in Kansas anymore, Science 288:813-15.

Thomson, K.S., 2001. Vestiges of James Hutton, American Scientist 89:212-15.

Wise, K.P., Snelling, A., 2005. A note on the pre-Flood/Flood boundary in the Grand Canyon, Origins 58:7-29.

Young, D.A., 1995. The Biblical Flood: A Case Study of the Church’s Response to Extrabiblical Evidence, Grand Rapids, Mi.

The birth of the solar system

Jupiter’s somposition throws planet-formation theories into disarray
Robert Roy Britt for 17 November 1999

Solar system makeover: wild new theory for building planets
Robert Roy Britt for 9 July 2002

Death spiral: why theorists can’t make solar systems
Ker Than for 28 March 2006

Uranus and Neptune – and the origin of life on Earth
By Leslie Mullen, Astrobiology Magazine

Earth-like planets may be more common than once thought
Science Daily report on the paper by Raymond et al.

Armitage, P.J., 2007. Lecture notes on the formation and early evolution of planetary systems.

Beer, M.E., King, A.R., Livio, M., Pringle, J.E., 2004. How special is the solar system? Monthly Notices of the Royal Astronomical Society 354:763-68.

Bernstein, G.M. et al., 2004. The size distribution of Trans-Neptunian Bodies, Astronomical Journal 128:1364-90.

Bodenheimer, P., 1995. Angular momentum evolution of young stars and discs, Annual Review of Astronomy and Astrophysics 33:199-238.

Boss, A.P., 1998. Evolution of the solar nebula. IV. Giant gaseous protoplanet formation Astrophysical Journal 503:923-37.

Boss, A.P., 2001. Gas giant protoplanet formation: disk instability models with thermodynamics and radiative transfer, Astrophysical Journal 563:367-73.

Boss, A.P., 2002. Formation of gas and ice giant planets, Earth and Planetary Science Letters 202:513-23.

Boss, A.P., 2006. Rapid formation of gas giant planets around M dwarf stars, Astrophysical Journal 643:501-08.

Charnoz, S., Morbidelli, A., 2007. Coupling dynamical and collisional evolution of small bodies II. Forming the Kuiper belt, the Scattered Disk and the Oort Cloud, Icarus in press.

Cresswell, P., Nelson, R.P., 2006. On the evolution of multiple protoplanets embedded in a protostellar disc, Astronomy & Astrophysics 450:833-53.

Hartmann, L. et al., 2005. The accretion disk of the lithium-depleted young binary ST 34, Astrophysical Journal 628:L147-L150.

Herbst, W., Eislöffel, J., Mundt, R.,Scholz, A., 2007. The rotation of young low-mass stars and brown dwarfs. In: B. Reipurth, D. Jewitt & K. Keil (eds), Protostars and Planets V, Tucson.

Hester, J.J., Desch, S.J., Healy, K.R., Leshin, L.A., 2004. The cradle of the solar system, Science 304:1116-17.

Hubickyj, O., Bodenheimer, P., Lissauer, J.J., 2005. Accretion of the gaseous envelope of Jupiter around a 5-10 Earth-mass core, Icarus 179:415-31.

Izidoro, A., Raymond, S.N., Morbidelli, A., Winter, O.C., 2015. Terrestrial planet formation constrained by Mars and the structure of the asteroid belt, Monthly Notices of the Royal Astronomical Society 453:3619–3634.

Johansen, A., Jacquet, E., Cuzzi, J.N., Morbidelli, A., Gounelle, M., 2015. New paradigms for asteroid formation. In: P. Michel et al. (eds), Asteroids IV, University of Tucson, Arizona, pp 471-492.

Johansen, A., Mac Low, M., Lacerda. P., Bizzarro. M., 2015. Growth of asteroids, planetary embryos, and Kuiper Belt objects by chondrule accretion. Sci. Adv. 1(e1500109):1-11.

Krumholz, M.R., Tan, J.C., 2006. Slow star formation in dense gas: evidence and implications, Astrophysical Journal 654:304-15.

Lambrechts, M., Johansen, A., 2012. Rapid growth of gas-giant cores by pebble accretion, Astrononmy & Astrophysics 544, A32.

Matt, S., Pudritz, R.E., 2005. Accretion-powered stellar winds as a solution to the stellar angular momentum problem, Astrophysical Journal 632:L135-38.

Militzer, B., et al., 2008. A massive core in Jupiter predicted from first-principles simulations, Astrophysical Journal Letters 688:L45-L48.

Owen, T. et al, 1999. A low-temperature origin for the planetesimals that formed Jupiter, Nature 402:269-70.

Raymond, S.N., Mandell, A.V., Sigurdsson, S., 2006. Exotic Earths: forming habitable worlds with giant planet migration, Science 313:1413-16.

Richardson, L.J. et al., 2007. A spectrum of an extrasolar planet,Nature 445:892-95.

Saumon D., Guillot T., 2004. Shock compression of deuterium and the interiors of Jupiter and Saturn, Astrophysical Journal 609:1170-80.

Steffánson, G. et al., 2023. A Neptune-mass exoplanet in close orbit around a very low-mass star challenges formation models. Science 382:1032–1035.

Stern, S.A., Colwell, J.E., 1997. Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30 50 AU Kuiper Gap, Astrophysical Journal 490:879-82.

Taylor, S.R., 2004. Why can’t planets be like stars? Nature 430:509.

Tsiganis, K., 2015. How the Solar System didn’t form, Nature 528:202-204.

Ward, W.R., 1997. Protoplanet migration by nebula tides, Icarus 126:261-81.

Weidenschilling, S.J., Marzari, F., Hood, L.L., 1998. The origin of chondrules at Jovian resonances, Science 279: 681-84.

Williams, J.P., Blitz, L., McKee, C.F., 2000. The Structure and evolution of molecular clouds: from clumps to cores to the IMF, Protostars and Planets IV, Tucson.

Evolution in the genome

Caporale, L., 2004. Genomes don’t play dice, New Scientist issue 2437, pp 42-45.

Freeland, S.J., Knight, R.D., Landweber, L.F., Hurst, L.D., 2000. Early fixation of an optimal genetic code, Molecular Biology and Evolution 17:511-18.

Gómez-Valero, L., Rocha, E.P.C., Latorre, A., Silva, F.J., 2007. Reconstructing the ancestor of Mycobacterium leprae: the dynamics of gene loss and genome reduction, Genome Research 17:1178-85.

Konstantinidis, K.T., Tiedje, J.M., 2005. Genomic insights that advance the species definition for prokaryotes, PNAS 102:2567-72.

Mira, A., Ochman, H., Moran, N.A., 2001. Deletional bias and the evolution of bacterial genomes, Trends in Genetics 17:589-96.

Nilsson, A.I. et al., 2005. Bacterial genome size reduction by experimental evolution, PNAS 102:12112-16.

Nowell, R.W. et al., 2018. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLOS Biology, 2018; 16 (4): e2004830.

Olson, M., 1999. When less is more: gene loss as an engine of evolutionary change, American Journal of Human Genetics 64:18-23.

Pennisi, E. 2007. Human genetic variation, Science 318:1842-43.

Ranea, J.A., Grant, A., Thornton, J.M., Orengo, C.A., 2005. Microeconomic principles explain an optimal genome size in bacteria, Trends in Genetics 21:21-25.

Shubin, N.H., Dahn, R.D., 2004. Lost and found, Nature 428:703-04.

Weinreich, D.M., Delaney, N. F., DePristo, M.A., Hartl, D.L., 2006. Darwinian evolution can follow only very few mutational paths to fitter proteins, Science 312:111-14.

Whiting, M.F., Bradler, S., Maxwell, T., 2003. Loss and recovery of wings in stick insects, Nature 421:264-67.

Whiting, M.F., Whiting, A.S., 2004. Is wing recurrence really impossible: a reply to Trueman et al., Systematic Entomology 29:1-3.

How old is the Earth?

British Chalk Fossils

Chronos – Cyclostratigraphy (online database and research centre)

International Commission on Stratigraphy

NORGES (network of offshore records of geology and stratigraphy).
Useful chronological charts.

The Latemar controversy

Images from The Guide to Calcareous Nannoplankton Taxonomy

Andruleit, H., Rogalla, U., Stäger, S., 2004. From living communities to fossil assemblages: origin and fate of coccolithophores in the northern Arabian Sea, Micropaleontology 50:5-21.

Aubry, M.A., 2005. Approach to paleobiodiversity: Mesozoic calcareous nannoplankton, Micropaleontology 51:265-66.

Broerse, A.T.C., Brummer, G.J.A., van Hinte, J.E., 2000. Coccolithophore export production in response to monsoonal upwelling off Somalia (northwestern Indian Ocean), Deep-Sea Research II 47: 2179-205.

Damholt, T., Surlyk, F., 2004. Laminated-bioturbated cycles in Maastrichtian chalk of the North Sea: oxygenation fluctuations within the Milankovitch frequency band, Sedimentology 51:1323-42.

Ditchfield, P., Marshall, J.D., 1989. Isotopic variation in rhythmically bedded chalks: paleotemperature variation in the Upper Cretaceous, Geology 17:842-45.

Dunbar, R.H., Wellington, G. M., 1981. Stable isotopes in a branching coal monitor seasonal temperature variation, Nature 293:453-55.

Ehrlich, R., 2007. Solar resonant diffusion waves as a driver of terrestrial climate change, Journal of Atmospheric and Solar-Terrestrial Physics.

Falcon-Lang, H.J. et al. 2006. The Pennsylvanian tropical biome reconstructed from the Joggins Formation of Nova Scotia, Canada, Journal of the Geological Society 163:561-76.

Gale, A.S., Young, J.R., Shackleton, N.J., Crowhurst, S.J., Wray, D.S., 1999. Orbital tuning of Cenomanian marly chalk successions: towards a Milankovitch time-scale for the Late Cretaceous, Trans. Roy. Soc. Lond A, 357:1815-30.

Gingras, M.K., Pemberton, S.G., Dashtgard, S., Dafoe, L., 2008. How fast do marine invertebrates burrow? Palaeogeography, Palaeoclimatology, Palaeoecology 270:280-86.

Gradstein, F.M., Ogg, J.G., 2004. A Geologic Time Scale 2004 – why, how, and where next! Lethaia 37:175-81.

Hardie, L.A., 1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporates over the past 600 m.y., Geology 24:279-83.

Hickson, J.A., Johnson, A. L. A., Heaton, T. H. E., Balson, P. S., 1999. The shell of the Queen Scallop Aequipecten opercularis (L.) as a promising tool for palaeoenvironmental reconstruction: evidence and reasons for equilibrium stable-isotope incorporation, Palaeogeography, Palaeoclimatology, Palaeoecology 154:325-37.

Hilgen, F.J., Langereis, C.G., 1989. Periodicities of CaCO3 cycles in the Mediterranean Pliocene: discrepancies with the quasi-periods of the earth’s orbital cycles? Terra Nova 1: 409-415.

Huber, B. T., Norris, R.D., MacLeod, K. G., 2002. Deep-sea paleotemperature record of extreme warmth during the Cretaceous, Geology 30:123-26.

Karner, D.B., Muller, R.A., 2000. A causality problem for Milankovitch, Science 288:2143-44.

Krijgsman, W. et al. 2004. Revised astrochronology for the Ain el Beida section (Atlantic Morocco): No glacio-eustatic control for the onset of the Messinian Salinity Crisis, Stratigraphy 1:87-101.

Kuhn, T., 1962. The Structure of Scientific Revolutions, University of Chicago Press, Chicago.

Lauridsen, B.W., Gale, A. S., Surlyk, F., 2009. Benthic macrofauna variations and community structure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England, J. of the Geological Society 166:115-27.

Leary, P.N., Cottle, R.A., Ditchfield, P., 1990. Milankovitch control of foraminiferal assemblages from the Cenomanian of southern England, Terra Nova 1:416-19.

Lees, J.A., Bown, P.R., Mattioli, E., 2005. Problems with proxies?Cautionary tales of calcareous nannofossil paleoenvironmental indicators, Micropaleontology 51:323-33.

Mayer, H., Appel, E., 1999. Milankovitch cyclicity and rock-magnetic signatures of palaeoclimatic change in the Early Cretaceous Biancone Formation of the Southern Alps, Italy, Cretaceous Research 20:189-214.

Moro, A., 1997. Stratigraphy and paleoenvironments of rudist biostromes in the Upper Cretaceous (Turonian-upper Santonian) limestones of southern Istria, Croatia, Palaeogeography, Palaeoclimatology, Palaeoecology 131:113-31.

Nederbragt, A.J., Thurow, J., Pearce, R., 2007. Sediment composition and cyclicity in the mid-Cretaceous at Demerara Rise, ODP Leg 207. In: D.C. Mosher, J. Erbacher, M.J. Malone (eds), Proc. ODP, Sci. Results, 207: College Station, TX (Ocean Drilling Program), pp 1-31.

Ogg, J.G., Ogg, G., Gradstein, F.M., 2004. A Concise Geologic Time Scale 2004, Elsevier, Amsterdam.

Omerbashich, M., 2006. Comment on “Long-period astronomical forcing of mammal turnover” by van Dam et al, Nature 443:687-91.

Pomar, L., 2001. Ecological control of sedimentary accommodation: evolution from a carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands, Palaeogeography, Palaeoclimatology, Palaeoecology 175:249-72.

Preto, N., Hinnov, L.A., 2003. Unraveling the origin of carbonate platform cyclothems in the Upper Triassic Dürrenstein Formation (Dolomites, Italy), Journal of Sedimentary Research 73:774-89.

Prokoph, A., Villeneuve, M., Agterberg, F. P., Rachold, V., 2001. Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary, Geology 29:523-26.

Purton, L., Brasier, M., 1999. Giant protist Nummulites and its Eocene environment: Life span and habitat insights from delta18O and delta13C data from Nummulites and Venericardia, Hampshire basin, UK, Geology 27:711-14.

Royer, D.L. et al, 2004. CO2 as a primary driver of Phanerozoic climate, GSA Today 14: 4-10.

Scholle, P. A., Albrechtsen, T., Tirsgaard, H., 1998. Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea, Sedimentology 45:223-43.

Sprengel, C., Baumann, K.-H., Henderiks, J., Henrich, R., Neuer, S., 2002. Modern coccolithophore and carbonate sedimentation along a productivity gradient in the Canary Islands region: Seasonal export production and surface accumulation rates, Deep-Sea Research II 49:3577-98.

Stanley, S.M., Ries, J. B., Hardie, L. A., 2005. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology 33: 593-96.

Steuber, T., 1996. Stable isotope sclerochronology of rudist bivalves: Growth rates and Late Cretaceous seasonality, Geology 24:315-18.

Vaughan, S., Bailey, R.J. , Smith, D. G., 2011. Detecting cycles in stratigraphic data: Spectral analysis in the presence of red noise, Paleoceanography 26:PA4211.

Wal, P. van der, Kempers, R.S., Veldhuis, M.J.W., 1995. Production and downward flux of organic matter and calcite in a North Sea bloom of the coccolithophore Emiliania huxleyi, Marine Ecology Progress Series 126:247-65.

Wefer, G., Berger, W.H., 1980. Stable isotopes in benthic foraminifera: seasonal variation in large tropical species. Science 209:803-05.

Tidal beds in the Alps

Couëffé, R., Tessier, B., Gigot, P., Beaudoin, B., 2004. Le temps préservé sous forme de sédiments: résultats semi-quantitatifs obtenus dans la molasse marine miocène du bassin de Digne (Alpes-de-Haute-Provence, Sud-Est de la France). C. R. Acad. Sci. Paris, Sciences de la Terre et des planètes / Earth and Planetary Sciences 332:5-11.

Couëffé, R., Tessier, B., Gigot, P., Beaudoin, B., 2004. Tidal rhythmites as possible indicators of very rapid subsidence in a foreland basin: an example from the Miocene Marine Molasse Formation of the Digne Foreland Basin, SE France. Journal of Sedimentary Research 74:746-759.

Tessier, B., Gigot, P., 1989. A vertical record of different tidal cyclicities: an example from the Miocene Marine Molasse of Digne (Haute Provence, France). Sedimentology 36:767-776.

Tiktaalik roseae – a missing link?

Ahlberg, P.E., Clack, J.A., 2006. A firm step from water to land, Nature 440:747-49.

Clack, J.A., 2006. The emergence of early tetrapods, Palaeogeography, Palaeoclimatology, Palaeoecology 232:167-89.

Daeschler, E.B., Shubin, N.H., Jenkins, F.A., 2006. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan,Nature 440:757-63.

Laurenson, C., 2005. Behaviour of the Monkfish, Lophius piscatorius, recorded using a Remotely Operated Vehicle (ROV), North Atlantic Fisheries College, Fisheries Development Note no.15.

Why do sharks expose their dorsal fins?
Aidan Martin describes how an epaulette shark crawled out of the ocean and wrestled with an eel.

Shubin, N.H., Daeschler, E.B., Jenkins, F.A., 2006. The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb, Nature 440:764-72.

Hades, Tartarus and Gehenna

Carson, D., 1996. “On banishing the lake of fire” in The Gagging of God, Leicester, pp 515-36.

Pinnock, C.H., 1990. The destruction of the finally impenitent, Criswell Theological Review 4:243-59.

Mysteries of the cnidarians

Dawkins, R., 2004. The Ancestor’s Tale, London.

Kortschak, R.D., Samuel, G., Saint, R., Miller, D.J., 2003. EST analysis of the cnidarian, Acropora millepora, reveals extensive gene loss and rapid sequence divergence in the model invertebrates, Current Biology 13:2190-95.

Miller, D.J. et al, 2007. The innate immune repertoire in Cnidaria – ancestral complexity and stochastic gene loss, Genome Biology 8:R59.

Putnam, N.H. et al, 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization, Science 317:86-94.

Reitzel, A.M., Burton, P.M., Krone, C., Finnerty, J.R., 2007. Comparison of developmental trajectories in the starlet sea anemone Nematostella vectensis: embryogenesis, regeneration, and two forms of asexual fission, Invertebrate Biology 126:99-112.

Technau, U. et al, 2005. Maintenance of ancestral complexity and non-metazoan genes in two basal cnidarians, Trends in Genetics 21:633-39.

Van Iten, H. et al, 2006. Reassessment of the phylogenetic position of conulariids (?Ediacaran-Triassic) within the subphylum Medusozoa (phylum Cnidaria), Journal of Systematic Palaeontology 4:109-18.

The tale of Cambrian jellyfish

Bridges, A., Rare trove of fossilized jellyfish found in Wisconsin, The Salina Journal, 5 February 2003.

Cartwright, P., et al, 2007. Exceptionally preserved jellyfishes from the Middle Cambrian, Plos ONE 2(10): e1121. doi:10.1371/journal.pone.0001121.

Hagadorn, J.W., Dott, R. H. & Damrow, D., 2002. Stranded on an Upper Cambrian shoreline: Medusae from Central Wisconsin, Geology 30:147-50.

Hagadorn, J. W., Dott, R.H. & Damrow, D., 2003. Upper Cambrian medusae from Wisconsin, Geological Society of America Abstracts with Programs 35:106.

Meyer, S.C., Ross, M., Nelson, P., Chien, P., 2003. The Cambrian Explosion: biology’s Big Bang. In: J.A. Campbell, S.C. Meyer (eds), Darwinism, Design and Public Education, East Lansing, Mi, pp 323-402.

The Portuguese man-o’-war

Casey, C.W., Pugh, P.R., Haddock, S.H.D., 2005. Molecular genetics of the Siphonophora (Cnidaria), with implications for the evolution of functional specialization, Systematic Biology 54:916-35.

The primeval tradition of all mankind

Flood stories from around the world

Bar-Yosef, O., 1998. Early colonization and cultural continuities in the Lower Palaeolithic of western Asia. In: M. D. Petraglia & R. Korisettar (eds), Early Human Behaviour in Global Context, London, pp 221-79.

Catlin, G., 1867. O Kee-Pa, a Religious Ceremony: and other Customs of the Mandans, London.

Eliade, M., 1958. Patterns in Comparative Religion, London.

Frazer, J.G., 1923. Folk-lore in the Old Testament, London.

Mbiti, J.S., 1975. Introduction to African Religion, London.

Preuss, K.Th., 1922. Die höchste Gottheit bei den kulturarmen Völkern, Psychologische Forschungen 2:161-208.

Quack, J.F., 1992. Eine Erwähnung des Reiches von Aleppo in den Ächtungstexten?,Göttinger Miszellen 130:75-78.

Riem, J.K.R., 1925. Die Sintflut in Sage und Wissenschaft, Hamburg.

Schmidt, W., 1935. The Origin and Growth of Religion: Facts and Theories, 2nd edn., tr. H. J. Rose, London.

Schniedewind, W.M., 2004. How the Bible Became a Book: The Textualization of Ancient Israel, Cambridge.

The tradition in ancient Sumer

Dalley, S., 2000. Myths from Mesopotamia, Oxford.

Gordon, C.H. & Rendsburg, G. A., 1997. The Bible and the Ancient Near East, New York.

Kitchen, K.A., 1995. The patriarchal age: myth of history? Biblical Archaeology Review 21:48-57, 88-95.

Pettinato, G., 1981. The Archives of Ebla: An Empire Inscribed in Clay, New York.

Roberts, J.J.M., 1972. The Earliest Semitic Pantheon, Baltimore.

The Cataclysm – more than a flood

Austin, S.A. (ed.), 1994. Grand Canyon: Monument to Catastrophe, Institute for Creation Research, Santee, Ca.

Beyer, B.E., 1997. 5078 ma’yan. In: W. A. VanGemeren (ed.), The New International Dictionary of Old Testament Theology & Exegesis, Grand Rapids, Mi, vol. 2, pp 1018-19.

Craigie, P.C., 1983. Psalms 1-50, Waco, Tx, p. 210. Craigie references Ras Shamra Parallels, ed. L. Fisher, vol. 1, p 203.

Dahood, M., 1966. Psalms I, Garden City, NY.

Dahood, M., 1970. Psalms III, Garden City, NY.

Fouts, D.M., Wise, K.P., 1998. Blotting out and breaking up: miscellaneous Hebrew studies in geocatastrophism. In: R. E. Walsh (ed.), Proceedings of the Fourth International Conference on Creationism, Creation Science Fellowship, Pittsburgh, Pa., pp 217-28.

Hasel, G.F., 1974. The fountains of the great deep, Origins (Loma Linda) 1:67-72.

Hasel, G. F., 1978. Some issues regarding the nature and universality of the Genesis flood narrative, Origins 5:83-98.

Lambert, W.G. & Millard, A. R., 1969. Atra-hasis, the Babylonian Story of the Flood, Oxford.

Longman III, T., 1997. Literary approaches and interpretation. In: W. A. VanGemeren (ed.), op. cit., pp 103-24.

Seely, P.H., 1997. The geographical meaning of ‘earth’ and ‘seas’ in Gen 1:10, Westminster Theological Journal 59:231-55.

Tsumura, D.T., 1989. The Earth and the Waters in Genesis 1 and 2, Sheffield.

Van Dam, C., 1997. 4681 mhh. In: W. A. VanGemeren (ed.), op. cit. Grand Rapids, Mi., vol. 10, pp 913-14.

Weinfeld, M., 1978. Genesis 7:11, 8:1-2 against the background of Ancient Near Eastern tradition, Die Welt des Orients 9:242-48.

Wenham, G.J., 1987. Genesis 1-15, Waco, Tx.

The chronology of Genesis 7-8

Barré, L. M., 1988. The riddle of the Flood chronology, Journal for the Study of the Old Testament 41:3-20.

Cryer, F.H., 1985. The interrelationships of Gen 5.32; 11.10-11 and the chronology of the Flood (Gen 6-9). Biblica 66:241-61.

Dillmann, A, 1897. Genesis Critically and Exegetically Expounded, Edinburgh, vol. 1.

Emerton, J.A. 1988. An examination of some attempts to defend the unity of the Flood narrative in Genesis, Part II. Vetus Testamentum 38:1-21.

Kidner, D., 1967. Genesis, Leicester.

Lemche, N.P., 1980. The chronology in the story of the Flood, Journal for the Study of the Old Testament 18:52-62.

Seely, P.H. 1997. The geographical meaning of ‘earth’ and ‘seas’ in Gen 1:10, Westminster Theological Journal 59:231-55.

Seidl, U., 1998. Das Flut-Ungeheuer abubu, Zeitschrift für Assyriologie 88:100-13.

Tsumura, D.T., 1989. The Earth and the Waters in Genesis 1 and 2, Sheffield

Wenham, G.J., 1978. The coherence of the Flood narrative, Vetus Testamentum 28:336-48.

Wenham, G.J., 1987. Genesis 1-15, Word Biblical Commentary vol. 1, Waco, Texas.

Younger, L., 1990. Ancient Conquest Accounts: A Study in Ancient Near Eastern and Biblical History-Writing, Sheffield.

Flood texts from Mesopotamia

Brückner, H., 2003. Uruk – a geographic and palaeo-ecologic perspective on a famous ancient city in Mesopotamia, Geoöko 24: 229-48.

Dalley, S., 2000. Myths from Mesopotamia, Oxford.

Nebuchadrezzar’s dream of a great image

Robinson, S.J., 1991/92. The chronology of Israel re-examined: The first millennium BC. Journal of the Ancient Chronology Forum 5, 89-98.


Books recommended as ‘essential readings‘ by the Discovery Institute.

Denyse O’Leary, 2004. By Design or by Chance?


Noah’s Ark Zoo Farm