10. Ape to man


When viewed up close, the Australopithecus-Homo transition has always been murky.
Daniel Lieberman, Nature 449:291 (2007)

In a world where more than half the population live in cities, and reality is defined by roads, concrete buildings, supermarkets, electricity, other human beings – by what we ourselves have created – it is easy to forget that man is an animal distinct from all other animals. We have subdued the world to such an extent that wild nature is excluded, and re-enters only through the portals of a cultural system that processes reality, turning it into food and entertainment. Nonetheless, our otherness requires explanation. One explanation is that we have always been different. Another is that we evolved from the animals that most resemble us, the great apes.

One exhibit that sometimes features in discussion is Sahelanthropus. Niklas and Kutschera ranked it among their top ten transitional fossils, characterising it as a mosaic of chimpanzee and hominid features. In several ways this fragmentary jawless skull epitomises the whole debate – enormous significance read into evidence that is predominantly missing, great media fanfare at the time of its discovery, academic disagreement thereafter. A mosaic of features from distinct lineages does not make for an ideal ancestor, and in this case the specimen had more features that were not chimp-like than that were, such as pronounced brow ridge, no muzzle, relatively thick tooth enamel and low rounded teeth cusps. Some have suggested that Sahelanthropus was a proto-gorilla. In order to keep the discussion within bounds, we will focus on the later, more relevant fossils: the bipedal australopithecines and early Homo.

Hominids (or ‘hominins’ if orangutans are excluded) are a taxonomic family consisting of humans and great apes – belief in their evolutionary kinship being so ingrained that it is fixed in the definition. Apes constitute a branch of the order primates, with which man shares a number of features, including:
  • finger nails, an opposable thumb and a big toe
  • stereoscopic, colour vision
  • two mammary glands located on the breast
  • usually single offspring
  • a large brain compared to body size

The list could be longer, but however long it is, the striking thing is that the features are not unique. Opposable thumbs also distinguish the opossums; manatees have fingernails; birds of prey have stereoscopic colour vision; elephants have two pectoral mammary glands and single offspring; and mice have a large brain-to-body-mass ratio. By themselves they tell us nothing about relationships. Although also not unique, the main specialisation of the primates is arboreality – the ability to live in trees.

So is man just an ape who left the trees, or does he possess features sufficiently distinct, as a package, for him to be differentiated from the primates? Similarities include the lack of a tail, the ability to move the arms above the head, a broad chest, a short lower back, more flexible hips, ankles and thumbs, and a more erect posture. But similarities may or may not be evidence of an evolutionary relationship. Differences are also important, especially if the interval in which they are supposed to have arisen is very short. The principal differences are:

  Apes Man
1 Brain and body size small Brain and body size larger
2 No neck, spine joins skull from the back; extensive muscular connections between head and shoulder; muscles attached to nuchal crest stabilise forward-oriented head Neck, spine joins skull from below; no nuchal crest; head stabilised during running by nuchal ligament
3 C-shaped spine for walking on all fours, sacrum narrow, straight and parallel to spine; typically four lumbar vertebrae S-shaped spine for upright stance and walking, sacrum broad, curved and tilted; typically five lumbar vertebrae, larger than in apes
4 Blades of iliac crest (upper part of hipbone) flat and parallel to each other Blades turned backward and projecting to increase leverage of spine muscles
5 30 facial muscles for expression and recognition 54 facial muscles for complex social relationships
6 Small semi-circular canals in the inner ear Large semi-circular canals in the inner ear, for balance in the vertical plane
7 Arms longer than the legs Legs longer than the arms
8 Chest funnel-shaped Chest barrel-shaped
9 Hands have a weak relatively short thumb, long curved finger bones and long palm Strong mobile thumb (3 additional muscles) connected to wrist by saddle joint; finger bones straight; apical tufts
10 Feet are like hands, with opposable big toes for grasping; apes usually walk on all fours Feet are arched, and used for walking rather than climbing; big toe not opposable
11 Knee joints do not lock upright Knee joints are bigger and lock upright
12 Hip joints do not extend fully upright and pelvis is broad; apes can stand only with legs bent Hip joints extend upright; large buttock muscles and pelvic attachment areas aid running
13 Short Achilles tendon; medial arch of the foot is low Long Achilles tendon for running; high medial arch
14 Hairy body for heat insulation, no female pubic hair or male top lip; nails grow quickly; fewer sweat glands Constantly growing hair on top of head; hairy male face, pubic hair, elsewhere hair is fine and sparse; nails grow slowly
15 Sclera of the eye (surrounding the iris) is brown Sclera is white; eyes horizontally more elongated
16 Larynx and vocal cords capable of only simple sounds Larynx and vocal cords capable of complex sounds
17 Ears sensitive to frequencies of 1-8 kilohertz Ears sensitive to frequencies of 2-4 kilohertz
18 No hymen in female; males mate from behind Hymen; vulva at 45° angle permits frontal mating
19 Mammary glands purely for milk production; female breasts are small Female breasts enhanced by body fat for attractiveness/beauty
20 Ovulation (fertility) apparent Ovulation concealed
21 Birth of young easy and rapid; broad pelvic canal Birth of young painful and slow, though may have been easier when crania were smaller
22 No menopause Menopause
23 Male has a penis bone (baculum) for erection; female has a clitoral bone. Penis boneless, erection achieved by blood; no clitoral bone

In total, these differences represent a high mountain for natural selection working on errors in DNA replication to climb, to say nothing about mental and spiritual differences. It is often claimed that in their genetic make-up chimpanzees and humans are very similar. However, if that were so (recent findings indicate otherwise), the similarity in genes would be paradoxical, for anatomically there is a gulf. The supposition that apes and humans as known today belong to the same family tree does not, on the anatomical facts, seem justified.

Differences capable of showing up in the record of fossil bones may, of course, have been smaller in the past and have diminished back in time towards a common stem. Or the two groups might not be related at all, whether or not the differences were smaller. That remains to be seen. As often, the interested reader will have to put a little effort into mastering a few new terms (mostly species names). However, do that and by the end of this article you will be equipped to form your own judgement as to whether apes and man are related. Whatever your starting position, be prepared to change your mind, for the story that emerges is surprising.

Overview of the claimed hominid lineage
Perhaps the best introduction to the fossil record is by way of a diagram such as the one below (Lieberman 2009, adapted), showing the species considered relevant to the story of man’s evolutionary prehistory and their suggested relationships.

Adapted from Lieberman 2009 - click on figure to show in separate window

Note that humans are not thought to descend from modern-day apes but from australopithecines (light and dark orange in the diagram). While the differences between extant humans and apes are certainly relevant, we are not retracing the history of both lineages when we go back through the fossil record. We are comparing human beings with apes that are long extinct, possibly as a result of human beings hunting them to extinction. That is a handicap, in addition to the poverty of the fossil record. Worse still, with the solitary exception of one mid-Pleistocene chimpanzee, gorillas and chimpanzees have no fossil record at all across the period (hence their absence from the diagram).


A jawless skull. Described as looking like an australopithecine from the front and a chimpanzee from behind. Initial claims that the animal was bipedal, i.e. walked on two legs, have since been disputed (Wolpoff et al. 2004), making its hominid status problematic – hominids are bipedal almost by definition. To add to the controversy, the scientific report of the fossil made no mention of its being found out of context, on desert sand [photographed here]. Although the age is fairly secure, it does not fit well with ideas about when hominins and orangutans began to diverge.

Ardipithecus ramidus

This taxon is represented by more than 100 specimens and is much better known. It lived in woodlands, moved along the branches with its palms and was to some degree bipedal. It had very long arms and, like other apes, had an opposable (divergent) big toe, suited to climbing. However, according to the report (Lovejoy et al. 2009), its body-plan bore ‘little or no functional relationship to the highly derived suspension, vertical climbing, knuckle-walking, and facultative bipedality of extant African apes’. To some specialists, its remoteness from the chimpanzee body-plan implies it was close to the common ancestor of what later became the distinctive chimpanzee and australopithecine forms. Others argue that it was on another line altogether, and such features as it shared with the australopithecines evolved in parallel. Either way, Ardipithecus is unlikely to have been the australopithecines’ ancestor, despite living at the right time. No one knows where the australopithecines came from.

Will the true Australopithecus stand up?

Different ways in which apes support themselves in the treesHabitual or obligate bipedality is where walking on two legs is the usual or only mode of locomotion. ‘Facultative bipedality’ means an ability to walk on two legs in short bursts, and seems to have been the characteristic mode of the australopithecines. The relevant pelvic and foot bones are often either missing or not found with the rest of the skeleton, so the degree of bipedality is difficult to assess, but their overall body plan was ape-like, not human. The relatively high arm-to-leg-length ratio and forearm-to-humerus length ratio suggest they spent most of their time in the trees, where, like orangutans, they moved along branches with an erect posture as their hands obtained additional support from the branches above. Habitual hand-assisted bipedality in trees – a credible scenario for at least some of the australopithecines – should not be confused with habitual free-standing bipedality on the ground, for which the australopithecines show no clear evidence.


‘Australopithecus’ afarensis

‘Lucy’, or AL 288-1, the best preserved example of Australopithecus afarensis, came from Hadar, a village in the Afar region of Ethiopia just 10 km from Gona (‘AL’ stands for Afar Locality). The environment of the time fluctuated between woodland and grassland, and Lucy’s anatomy was that of a bipedal. The degree of her bipedality has been the subject of unending debate, with opposing camps doubting not only the interpretation of each other’s data but even their accuracy (Stern 2000). Statements that ‘Lucy was a primitive hominin, with a brain roughly the size of a chimpanzee’s, but at 3.2 million years old, she already walked upright like we do’ may be correct but convey the impression that her small brain and body size were non-human features, which is incorrect. There is nothing distinctively ape-like about her. But the preserved roughly 30% of her skeleton still leaves room for a lot of uncertainty, and Lucy may not be representative of the A. afarensis reflected in other fossils. Lucy may have been human and as such falsely labelled as australopithecine.

A case in point is the semi-circular canals of the inner ear, important for balance. While Lucy herself is virtually headless, the semi-circular canals of another partial skeleton attributed to afarensis resemble those of extant great apes more than modern humans (Alemseged et al. 2006). Lucy’s skeleton includes hardly any foot bones, but toe bones (AL 333-115) from relatively nearby show the curvature characteristic of arboreal apes. An arboreal habitat is also indicated by curved finger bones and an upwardly oriented shoulder socket, but again these are not part of AL 288-1, so we do not know that these belong to the same species. Conversely, a recently described fourth metatarsal (AL 333-160) is indistinguishable from the metatarsal of a human foot, and the only reason it is attributed to an australopithecine called afarensis is because ‘A. afarensis is the only hominin known from Hadar’, a logic that is suspect, considering that the region has thrown up quite a few human-like bones, to say nothing of the Lucy skeleton itself. Only when Lucy is supplemented with the head of an ape from elsewhere in the region (on the basis that ‘afarensis is the only hominin known from Hadar’) does ‘A. afarensis’ become much less human-like.

Australopithecus garhi

Australopithecus garhi, National Museum of Ethiopia, Addis AbabaThere is no consensus as to which extinct ape species might have given rise to Homo. The ancestor proposed in the diagram is Australopithecus garhi, from the Awash River Valley in Ethiopia, dated to c. 2.5 Ma ago. The remains consist of teeth and a partial cranium, enough to infer a cranial capacity of about 450 cc (about average for the genus) but not enough to make any confident link with Homo. What we have suggests non-relationship. It had a sagittal crest at the top of the skull for anchoring large chewing muscles, its upper jaw (unlike that of Sahelanthropus) jutted out prominently, and although the dental arcade was U-shaped, the molars and canines were huge (three times the size of modern human teeth). A few hundred metres distant lay an antelope bone with cuts and percussion marks made by tools. The discarded femur of a horse also bore cut marks. Large mammals at the lakeside site were being butchered for meat and their long bones broken to extract marrow. Although the tools themselves were not recovered, stone cores and flakes were found 96 km to the north at Gona, where the raw materials for tools were plentiful. At the lake there were no such materials, presumably because the butchers were keeping their tools for future use. Clearly textbooks need to be rewritten if Homo was a predator rather than descendant of the australopithecines.

Later australopithecines

Africanus, the first to be dubbed an australopithecine, is very poorly known. The species name was coined in 1924 to describe the skull of a young human child (the ‘Taung Child’). Some other material, including a hip joint showing the functionality of a habitual biped, is also human; other elements attributed to A. africanus are not and may be genuinely australopithecine. Like afarensis, the species is a composite, a modern-day ‘Piltdown Man’, except that no hoaxer put his disjointed bones together and the palaeoanthropological community have deceived themselves. Some of the bones are no older than the earliest acknowledged human fossils.

Also contemporary with early Homo, the later australopithecines boisei and robustus developed thicker cranial walls, pronounced sagittal crests, huge teeth and huge jaws. In these respects they were on a trajectory at odds with the evolutionary trends shown by man himself. Boisei changed little over the presumed more than 1 million years of its existence and appears to have eaten grass. The recently discovered “Australopithecus sediba” represents an even greater evolutionary puzzle. Most of its features were like those of early Homo, with which it was contemporary. While it had a small brain, it also had a small body, at a time when human brain and body size was both smaller and more variable. Large brains do not necessarily mean greater intelligence, nor vice versa. Homo floriensis, the diminutive “hobbit” inhabitant of the island of Flores, dating to comparatively recent times, had a brain of only 417 cc, about the same size as sediba. In the light of such finds we all need to rethink what it means to be human. In any case, as with Lucy, the non-human name given to Australopithecus sediba is confusing and, as argued by Been et al. (2014), the bones may be a mixture of australopithecine and human – a disturbingly common possibility.

Early human beings

At the point where Homo fossils appear on the scene (columns coloured blue in the diagram) the fossil record gets even more interesting, and difficult to decipher. There was no smooth transition from Australopithecus to Homo. The dotted lines indicate a gap, due either to lack of relationship or lack of decisive fossils. The oldest acknowledged Homo is H. habilis. Fossils typically consist of a crushed, incomplete cranium, a few teeth or a few limb bones. One of the controversies surrounding H. habilis concerns how much of the assigned material actually belongs to the taxon. If australopithecine limb bones and human skulls are mixed together, its to some extent intermediate character may be spurious. The oldest suffi- ciently complete skulls to permit an estimation of brain volume (at 510–750 cc) date to 1.9 million years ago.

What is clear is that Homo has not remained static. He does not have an ideal form, as visualised in Greek statuary or as the species concept itself implies. At any one time, variability within species – including human beings – can be enormous. So can the extent to which morphology within the same lineage changes over time. Species change because the environments to which they are adapted change. They must continue to adapt. A shift in climate may result in a less wooded, grassier landscape and a consequent shift in the kind of food available, in which case the size and shape of the teeth, the jaw and the musculature around the jaw may need to be reconfigured. The purpose of the jaw apparatus is to enable efficient diet-appropriate mastication, not to facilitate differentiation between species. Man has not always been an agriculturalist, or a meat-eater, and may not always have used fire for cooking. A difference in dentition between then and now does not necessarily betoken a difference in species.

Taxonomists (being themselves subject to classification) tend to be either ‘lumpers’ or ‘splitters’, according to whether they are disposed to interpret differences as evidence of separate species or as minor variations within the same species. Theoretically, a species is the generalised identity of all individuals that can interbreed, a possibility that cannot be determined from fossils. Whether, say, Homo erectus and Homo neanderthalensis could interbreed is a matter of judgement, and opinions differ. One factor in forming a judgement is whether one accepts that man evolved from the apes at all. A succession of species, going from one evolutionary boundary to the next, lends more credibility to the idea than a single continually evolving species does, and a new species earns its discoverer greater prestige than the variant of an existing one. The same applies to australopithecine evolution. Dissatisfied with the chaos resulting from the lack of an agreed methodology for identifying species, one researcher went so far as to call for the assigning of new names to be suspended (Quintyn 2009).

Early human bipedality

Bipedality is often regarded as the key to becoming human, but as with many other traits, bipedality is not unique to humans or hominids. Some of the earliest reptiles were bipeds. So were some dinosaurs, including the earliest. We know of at least one extinct non-hominid ape that was bipedal (Oreopithecus). Among extant facultative bipeds are several kinds of lizard, bears, kangaroos, several kinds of rodent (including kangaroo rats and mice), various kinds of flightless bird (if not all birds), cockroaches and some insects. The zebra-tailed lizard can run at up to 5.3 metres per second – 50 body-lengths per second. While all humans are bipeds, not all bipeds are humans.

On the other hand, no animal walks or runs in quite the same manner as humans. Substantially larger articulating surface areas relative to body mass in the joints of the lower body, including the femoral head and knee, the sacroiliac joint and the lumbar vertebrae, lower the impact stresses generated during walking, and help to dissipate the much higher impact loads during running (Bramble & Lieberman 2004). ‘We keep the trunk erect; in walking, our knees are almost straight at mid-stance; the forces our feet exert on the ground are very markedly two-peaked when we walk fast; and in walking and usually in running we strike the ground initially with the heel alone’ (Alexander 2004).

Apart from man, no primates have ever been obligate bipeds, none appear to have been habitually bipedal except, possibly, in the trees, and none have ever been capable of long-distance running. The living great apes are habitual quadrupeds. Whether one then interprets the optimal design of the human body for walking and running as showing that man has always been distinct from apes, or that he represents the final stage in a trend of increasing bipedality, depends on philosophical disposition. The fossil evidence shows no such trend. The australopithecines show an increased degree of bipedality, but they came and went; the living apes are not bipedal.

Homo‘s foot is unique and an engineering marvel, with 26 bones, 30 joints, 19 muscles, 115 ligaments and 250,000 sweat glands. But ligaments and sweat glands do not leave fossils. As regards the skeletal elements, one of the key ape-to-man transformations relates to the big toe (hallux). In apes this toe is a divergent digit designed for grasping, in man a convergent digit designed for weight-bearing, balance and propulsion. Evidence for such a transformation is lacking. ‘There is no evidence of any ape living or extinct that gave up hallucial divergence.’ (McHenry & Jones 2006) Even apes that normally live on the ground, such as gorillas, have divergent big toes.

The oldest bone fossil (distinct from tools and tracks) unequivocally belonging to Homo is a temporal bone dated to 2.4 million years ago in the received chronology. A relatively well-preserved foot from Olduvai, labelled OH 8, dates to around 1.8 million years ago. Although not preserved, the big toe seems to have been convergent, and as in humans, the foot was longitudinally arched (Berillon 2003). Arching improves the efficiency of locomotion in two ways: by acting as a spring during running and by providing rigidity to the foot as it toes off.

The oldest members of Homo to preserve both a complete hind limb and partial foot are those from Dmanisi, Georgia. Dated to 1.77 Ma and among the earliest humans known outside Africa, the Dmanisi individuals were short-statured (1.45 to 1.66 m) and had small brains (600 to 775 cc). Relative to body mass, the hind limb (leg) was longer than that of African apes and A. afarensis and within the lower range of values for modern humans (Pontzer et al. 2010). The foot was also functionally similar to that of modern humans, with the characteristic ankle-joint, mid-foot arch and convergent toe. Cultural indications – stone tools and evidence of hunting and/or scavenging – were consistent with this evidence of walking and running ability.

The oldest virtually complete skeleton, KNM-WT 15000, from Nariokotome, Kenya, dates to 1.53 Ma – a photograph appears on the website’s rotating banner. In morphology it is obviously and entirely human, and belongs to an adolescent boy about 5′ 4″ (163 cm) tall (Graves et al. 2010, who revised the age and height downwards). As with the Dmanisi individuals, he was capable of travelling long distances, and in all probability lived by foraging and hunting.

The interpretative framework

The evidence so far reviewed indicates that (1) there has always been a wide anatomical gap between apes and humans, notwithstanding that each have been continually evolving, and (2) the discontinuity corresponds with the appearance of Homo fossils around ‘2 million years ago’. In other words, the distinction between Homo and Australopithecus coincides with a difference significantly greater than that between the perceived species within those categories. In the framework developed here, the true date would be much lower. Dating systems based on radioactive decay exaggerate true time, but to a progressively lesser extent as time passes. Consequently the final 2 million years as measured by isotope dating represent much more than 2/4567ths of Earth’s total history – around one third.

The lateness of man’s appearance was proportional to the time environments took, following the end-Hadean cataclysm, to stabilise towards the conditions experienced as normal today, conditions that permitted long-distance exploration, hunting, settlement, and eventually agriculture. The extraordinary acceleration in the pace of change over the last five thousand years, recording the rise of civilisation from ziggurats to skyscrapers and the growth in population from a few million to almost seven billion, is what followed as man responded to the new opportunities. The Earth had returned to something close to the stability that existed before the cataclysm. In comparison with the rest of history, today’s slow pace of geological change and rapid pace of cultural change are abnormal.

Fossils of human beings are extremely rare when they first appear because their population was then neither numerous nor widespread. The entrance of our species is unspectacular, while extant great apes have virtually no fossil record at all. In the received chronology five hundred thousand years separate the earliest human skull and the earliest complete skeleton of a human – longer in real terms, probably, than the planet’s entire history. Representative stone tools from Gona, Ethiopia Five hundred thousand years also separate the oldest known stone tools from the first human skull. Hominids of some description, we have seen, were making tools at Gona and butchering animals with them as early as 2.5 Ma ago. The very oldest known tools, from the same region, go back to 2.6 Ma. The identity of the tool-maker has to be determined on circumstantial evidence, involving an assessment of which animal might have been capable of the technology. Palaeoanthropologists are reluctant to suppose that it could have been Homo, despite the ‘sophisticated understanding of stone fracture mechanics’ revealed by the tools, the clear association with Homo later in the record and the inability of any living ape to replicate them. The tools were used for preparing his dinner, which, at 1.95 Ma, included turtle, crocodile, fish, bovids, hippopotamus, rhinoceros (Braun et al. 2010) and probably also australopithecines.

Received date Evidence of Homo
3.66 Ma Oldest footprints
2.58 Ma Oldest stone tools
2.42 Ma Oldest bone fossils
1.53 Ma Oldest human skeleton


Laetoli footprintsIn addition to bones and tools, there is also the evidence of footprints. Until recently, the oldest known human-like footprints were those at Laetoli, impressed 3.66 Ma ago on a surface of wet volcanic ash from the Ngorongoro volcano (East African Rift Valley). They precede the oldest acknowledged human body fossils by 1 million years. The pattern is clearly bipedal, and the stride length within the range of modern humans (though small). The feet were arched and had big toes parallel to the other toes.

Because of their age the prints have been much debated. Were they really as human-like as they appeared? Could perhaps an australopithecine have made the prints – the contemporaneous ‘Lucy’, for example? While it was difficult to imagine feet with curved phalanges of afarensis fitting neatly into them, some argued that they were formed in the course of a ‘bent knee, bent hip’ gait. However, subsequent experiments showed that the latter type of gait would have resulted in toe impressions significantly deeper than heel impressions, whereas at Laetoli the impressions are about equally deep. As such they are characteristic of fully erect, human-type walking (Raichlen et al. 2010) – the kind of walking the fourth metatarsal labelled AL 333-160 was capable of.

The footprints were discovered in the 1970s. In 2016, a new set of footprints was reported from the same horizon. The impressions are wonderfully distinct and even more recognisably human. They are also somewhat larger. The stature of one of the individuals is put at 1.65 metres (5 feet 6 inches), far taller than the diminutive ‘Lucy’ (Masao et al. 2016).

Human footprints on Crete dated c. 5.7 Ma agoIn 2017 came a still more startling discovery: human-like footprints in beach sandstones on the island of Crete dated to c. 5.7 Ma (Gierlinski et al. 2017). Among the human-like features were a non-divergent big toe, short lateral toes, the presence of a distinct ball and a bipedal, plantigrade stride.

Much like the tetrapod footprints that predate the time when tetrapods supposedly evolved from fish, these footprints effectively invalidate the idea that man evolved from australopithecines 2.5 to 2.0 million years ago. Upright, obligately bipedal Homo was already in existence. He wasn’t even confined to Africa

Kadanuumuu (‘Big Man’)

What do you do if you are convinced that Homo could not have been in existence 3.5 million years ago and you find, in the same region as that inhabited by his presumed ancestor afarensis, a human-looking skeleton dating to 3.6 million years ago? This was the problem posed by the partial skeleton KSD-VP-1/1, whose discovery in the Afar region, not far from Gona, was reported in June 2010. The solution chosen was to announce the fossil as that of an australopithecine and then characterise the Homo-like features as evolutionarily advanced. If the long-touted Lucy had to be repudiated, so be it:

The new A. afarensis specimen stood between 5 and 5 1/2 feet tall, towering over Lucy’s 3-foot height. Other fossil fragments suggested that Lucy was an unreliable measuring stick for A. afarensis, but the new fossil is the most conclusive evidence yet. Dubbed ‘Kadanuumuu’ or Big Man, it is described June 21 in the Proceedings of the National Academy of Sciences.

Big Man’s limbs also appear well-suited for running, in contrast to the shortened gait implied by Lucy’s skeleton. The proportions compare to those found two million years later in Homo erectus, and would not be out of place in a modern human, said study co-author Owen Lovejoy, a Kent State University paleoanthropologist.

“The difference between Australopithecus and humans is much less than everyone expected” said Lovejoy. “Upright walking and running were pretty advanced at 3.6 million years ago, and they didn’t change much over the next two million years. Most of the changes in that period of time took place elsewhere.”

The report itself did almost nothing to justify the attribution, comparing the fossil chiefly with two known species, A. afarensis as represented by Lucy (who, although diminutive, was a human being) and Homo sapiens. As often as not, the comparisons showed that Kadanuumuu was more similar to Homo than to Lucy, a later Homo. Over 5 feet tall, erect and capable of running, Kadanuumuu was of similar stature to the individual who had a large stride at Laetoli. He appears to have been just a big man, as his curious nickname signifies.

Two months later, in August 2010, came news that animal bones with ‘unambiguous stone-tool cut marks for flesh removal and percussion marks for marrow access’ had been found a few miles from Hadar and Gona. Yet more evidence of Homo in the region? Not so far as the discoverers were concerned. As they wrote in Nature, ‘The only hominin species present in the Lower Awash Valley at 3.39 Myr ago to which we can associate this tool use is A. afarensis.’ They were no doubt speaking for the whole palaeoanthropological community.